FASCIATA Genes for Chromatin Assembly Factor-1 in Arabidopsis Maintain the Cellular Organization of Apical Meristems

نویسندگان

  • Hidetaka Kaya
  • Kei-ichi Shibahara
  • Ken-ichiro Taoka
  • Masaki Iwabuchi
  • Bruce Stillman
  • Takashi Araki
چکیده

Postembryonic development of plants depends on the activity of apical meristems established during embryogenesis. The shoot apical meristem (SAM) and the root apical meristem (RAM) have similar but distinct cellular organization. Arabidopsis FASCIATA1 (FAS1) and FAS2 genes maintain the cellular and functional organization of both SAM and RAM, and FAS gene products are subunits of the Arabidopsis counterpart of chromatin assembly factor-1 (CAF-1). fas mutants are defective in maintenance of the expression states of WUSCHEL (WUS) in SAM and SCARECROW (SCR) in RAM. We suggest that CAF-1 plays a critical role in the organization of SAM and RAM during postembryonic development by facilitating stable maintenance of gene expression states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chromatin assembly factor CAF-1 is required for cellular differentiation during plant development.

Chromatin assembly factor CAF-1 facilitates the formation of nucleosomes on newly replicated DNA in vitro. However, the role of CAF-1 in development is poorly understood because mutants are not available in most multicellular model organisms. Biochemical evidence suggests that FASCIATA1, FASCIATA2 and MSI1 form CAF-1 in Arabidopsis thaliana. Because fasciata mutants are viable, CAF-1 is not ess...

متن کامل

Arabidopsis MSI1 is required for epigenetic maintenance of reproductive development.

WD40 repeat proteins similar to yeast MSI1 are conserved in animals and plants, in which they participate in complexes involved in chromatin metabolism. Although MSI1-like proteins are well characterised biochemically, their function in the development of multicellular eukaryotes is not well understood. We constructed Arabidopsis plants in which the AtMSI1 protein level was altered. Strong ecto...

متن کامل

Requirement for flap endonuclease 1 (FEN1) to maintain genomic stability and transcriptional gene silencing in Arabidopsis.

As a central component in the maturation of Okazaki fragments, flap endonuclease 1 (FEN1) removes the 5'-flap and maintains genomic stability. Here, FEN1 was cloned as a suppressor of transcriptional gene silencing (TGS) from a forward genetic screen. FEN1 is abundant in the root and shoot apical meristems and FEN1-GFP shows a nucleolus-localized signal in tobacco cells. The Arabidopsis fen1-1 ...

متن کامل

Pattern formation during de novo assembly of the Arabidopsis shoot meristem.

Most multicellular organisms have a capacity to regenerate tissue after wounding. Few, however, have the ability to regenerate an entire new body from adult tissue. Induction of new shoot meristems from cultured root explants is a widely used, but poorly understood, process in which apical plant tissues are regenerated from adult somatic tissue through the de novo formation of shoot meristems. ...

متن کامل

The HALTED ROOT gene encoding the 26S proteasome subunit RPT2a is essential for the maintenance of Arabidopsis meristems.

In higher plants, post-embryonic development is dependent on the activity of the root and shoot apical meristem (RAM and SAM). The quiescent center (QC) in the RAM and the organizing center (OC) in the SAM are known to be essential for the maintenance of meristematic activity. To understand the mechanism that maintains post-embryonic meristems, we isolated an Arabidopsis mutant, halted root (hl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 104  شماره 

صفحات  -

تاریخ انتشار 2001